Analysis on intensities and profile of Raman spectroscopy for CNE1 and CNE2

Li Jianghua, Du Yong, Zeng Musheng

Abstract


Raman spectroscopy (RS) has proved to be very effective in tracing the distribution of biological molecules within nasopharyngeal carcinoma (NPC) cells. In this paper, the representative radiotherapy model of NPC cell lines CNE1 and CNE2 were measured by Raman spectroscopy in the range of 750-3000cm-1. The scatter plots of intensity ratios of protein, lipid, and nucleic acids showed some overlap using some Raman markers. The spectral data were further evaluated using 19 intensities data set (selected intensity points) and the whole spectra data set (whole intensity points) by principal component analysis and linear discriminate analysis, yielding a diagnostic accuracy of 78% (56/72) and of 94% (68/72) to differentiate the two NPC cell lines, respectively. Our findings suggested that the whole Raman spectra are more optimistic accuracies than selected intensities for diagnosing the NPC cell lines and the information in the shape of RS could be further revealed by intensities.


Keywords


Raman spectroscopy; Nasopharyngeal carcinoma; CNE1; CNE2; PCA LDA

Full Text:

HTML PDF CITATION

References


V.P. Lutzky, D.J.Moss, D.Chin, W.B.Coman, P.G. Parsons, and G.M. Boyle, Biomarkers for Cancers of the Head and Neck. Clinical Medicine Insights: Ear, Nose and Throat 1, 5–15 (2008).

K.W.Lo, K.F.To, and D.P.Huang, Focus on Nasopharyngeal Carcinoma. Cancer Cell, 5 (5), 423-8 (2004).

Z.Q.Li, Y.F.Xia, Q.Liu, W.Yi, X.F.Liu, F.Han, W.Luo, T.X Lu, Radiotherapy-related typing in 842 patients in canton with nasopharyngeal carcinoma. Int. J Radiat Oncol Biol Phys. 66, 1011-16 (2006).

M.D.Keller, E.M.Kanter, and A.Mahadevan-Jansen, Mahadevan-Jansen, Raman Spectroscopy for Cancer Diagnosis. A. Spectrosc. 21(11), 33-41 (2006).

G.J.Puppels, F.F.M. de Mul, C.Otto, J.Greve, M.Robert-Nicoud, D.J.Arndt-Jovin, T.M. Jovin, Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347, 301-303 (1990).

R.Liu, J.F. Liu, X.X.Zhou, G.B.Jiang, Applications of Raman-based techniques to on-site and in-vivo analysis. Trends Anal. Chem. 30( 9), 1462 (2011).

W. S. Iwan and H. Thomas , Methods and Applications of Raman Microspectroscopy to Single-Cell Analysis. Appl. Spectrosc. 67( 8), 813-828 (2013).

K. Charlotte, A. L. Max, B. Hugh, W. James, H. Joanne, K. Catherine, S. Nick, Advances in the clinical application of Raman spectroscopy for cancer diagnostics. Photodiagnosis and Photodynamic Therapy 10, 207-219 (2013).

Y.H.Ye, Y.Chen, Y.Z Li, Y.Su, C.Y.Zou, Y.P.Chen, L.Ou, R.Chen, and H.S.Zeng, Characterization and discrimination of nasopharyngeal carcinoma and nasopharyngeal normal cell lines using confocal Raman microspectroscopy. Spectroscopy 25, 217-224 (2011).

Y.Z. Li , J. J. Pan , G. N. Chen , C. Li , S. J. Lin , Y. H. Shao , S.Y. Feng , Z.F. Huang , S. S.Xie , H.S. Zeng , R. Chen, Micro-Raman spectroscopy study of cancerous and normal nasopharyngeal tissues. J Biomed Opt. 18(2), 27003 (2013).

H. Huang, H. Shi, S.Y. Feng, W.W. Chen, Y. Yu, D. Lin and R. Chen, Confocal Raman spectroscopic analysis of the cytotoxic response to cisplatin in nasopharyngeal carcinoma cells. Anal. Methods, 5, 260-266 (2013).

J.Lin, R.Chen, S.Feng, Y.Li, Z.Huang, S.Xie, Y.Yu, M.Cheng, H.Zeng, Rapid delivery of silver nanoparticles into living cells by electroporation for surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 25, 388-394 (2009).

P. Liu, J. H. Li, Z. W. Tu, et al. Discrimination of NPC Cell Lines Associated with Malignant Types Using Raman Spectroscopy. Laser Physics. 22(11), 1682-1688 (2012).

S.H. Claudia, U. Martin, H. Carmen, R. Angelika, Investigation of lipid bodies in a colon carcinoma cell line by confocal Raman microscopy. Medical Laser Application. 26, 152-157 (2011).

H.M. Wang, X.R. Wu, Y.F. Xia, et al. Expression of ATM protein in nasopharyngeal carcinoma cell lines with different radiosensitivity. Chin J Cancer. 22, 579-81 (2003).

C.X.Yu, E.Gestl, et al. Characterization of human breast epithelial cells by confocal Raman microspectroscopy. Cancer Detection and Prevention. 30, 515-522 (2006).

Z.M.Zhang, S.Chen, Y.Z.Liang, Z.X Liu, Q.M.Zhang, L.X.Ding, F.Ye, and H. J.Zhou, An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy. J Raman Spectrosc. 41, 659-69 (2009).

Z.M.Zhang, S.Chen, Y.Z.Liang, Baseline correction using adaptive iteratively reweighted penalized least Squares. Analyst. 135,1138-46 (2010).

X.L.Yan, R.X.Dong, L.Zhang, X.J.Zhang, Z.W Zhang, Raman spectra of single cell from gastrointestinal cancer patients. World J Gastroenterol. 11(21), 3290-3292 (2005).

J.W. Zhang, A.G. Shen, Y. Wei, X.H. Wang, et al. Study of normal mucosa and gastric carcinoma by confocal Raman microspectroscopy. J Biomed Eng. 21(6), 910-912 (2004).

J.D.Gelder, K.D.Gussem, P.Vandenabeele, and L.Moens, Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 38, 1133-1147 (2007). DOI: 10.1002/jrs.1734

S.K.The, W.Zheng, K.Y.Ho, M.The, K.G.Yeoh, Z.W.Huang, Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques. J. Biomed. Opt. 13(3), 034013 (2008).

Z.W.Huang, S.K The, W.Zheng, K.Lin, K.Y.Ho, M.The, and K.G.Yeoh, In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy. Biosens. Bioelectron. 26, 383-9 (2010).

P.Crow, B.Barrass, C.Kendall, M.Hart-Prieto, M.Wright, R.Persad, and N Stone, The use of Raman spectroscopy to differentiate between different prostatic adenocarcinoma cell lines. Br J Cancer. 92(12), 2166-2170 (2005).

M.S.Bergholt, W.Zheng, K.Lin, K.Y.Ho, M.The, K.G.Yeoh, J.B.Y. So, and Z.Huang,

In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. Int. J. Cancer. 128, 2673-2680 (2010).

M.S.Bergholt, W.Zheng, K.Lin, K.Y.Ho, M.The, K.G.Yeoh, J.B.Y. So, and Z.Huang,

Characterizing variability in in vivo Raman spectra of different anatomical locations in the upper gastrointestinal tract toward cancer detection. J. Biomed. Opt. 16(3), 037003 (2011).

K.W.Short, S.S.Carpenter, J.P.Freyer, and J.R.Mourant, Raman Spectroscopy Detects Biochemical Changes Due to Proliferation in Mammalian Cell Cultures. Biophysical Journal. 88, 4274–4288 (2005).

K.Hamada, K.Fujita, N.I.Smith, M.Kobayashi, Y.Inouye, S.Kawata, Raman microscopy for dynamic molecular imaging of living cells. J Biomed Opt. 13(4), 044027 (2008).

Hunan college of medicine cancer research centre, Nasopharyngeal carcinoma cytological map, People’s health press, Beijing (1981).

P.P.Zhong, Y.X.HE, Y.F.Xia, S.S.Yan, Expression and subcellular localization of DNA-PK in nasopharyngeal carcinoma cell lines CNE1 and CNE2 with different radiosensitivity. Chinese Journal of Cancer Research. 18(2),77-82 (2006).

Z.Huang, M.S.Bergholt, W.Zheng, K.Lin, K.Y.Ho, M.The, and K.G.Yeoh, In vivo early diagnosis of gastric dysplasia using narrow-band image-guided Raman endoscopy. J. Biomed. Opt., 15, 037017 (2010).

I.Notingher, G.Jell, P.L.Notingher, I.Bisson, O.Tsigkou, J.M.Polak, M.M.Stevens,

L.L.Hench, Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells. Journal of Molecular Structure. 744-747, 179-185 (2005).

Y.X. He, P.P. Zhong, S.S. Yan, L. Liu, H.L. Shi, M.S. Zeng, Y.F. Xia, DNA-dependent protein kinase activity and radiosensitivity of nasopharyngeal carcinoma cell lines CNE1/CNE2. Sheng Li Xue Bao. 59(4), 524-33 (2007).

C. Krafft, T. Knetschke, A. Siegner, R.H.W. Funk, R. Salzer, Mapping of single cells by near infrared Raman microspectroscopy. Vib. Spectrosc. 32, 75-83 (2003).

P.V. Zinin, A. Misra, L. Kamemoto, Q. Yu, N. Hu, S.K. Sharma, Visible, near-infrared, and ultraviolet laser-excited Raman spectroscopy of themonocytes/macrophages (U937) cells. J. Raman Spectrosc. 41, 268-274 (2010).




DOI: http://dx.doi.org/10.15383/jnpc.17

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

eISSN: 2312-0398

Asia Press is a professional Science, Technology and Medicine publisher, who owns rapid publication, Peer-Reviewed, Open Access Journals. Asia Press aims to promote “knowledge sharing”. As you know, the main barrier for free “knowledge sharing” is the cost of publishing and transfer. In order to encourage scholars and scientists to the max, and devote whole power to realize the aim of “knowledge sharing” and the benefit of “all” mankind, Asia Press performs a permanent policy of no charge for publication and access, and always open its door for authors worldwide.

© 2013-2017 by the Asia Press. All rights reserved.